If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+43x+20=0
a = 14; b = 43; c = +20;
Δ = b2-4ac
Δ = 432-4·14·20
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-27}{2*14}=\frac{-70}{28} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+27}{2*14}=\frac{-16}{28} =-4/7 $
| 2v+6=32v-4v+62 | | 12y-38=83 | | 7^(5x+3)=312 | | 7^5x+3=312 | | v^2+1=96 | | (7x-4)^2=0 | | 2377200+45x=3000000 | | 0=14+q | | 2j=4.2 | | (9x-17)+(12x-32)=140 | | 2377200+45x=2066400+150x | | 7=-4+s | | -245=7h | | 2377200+45x=2066400+50x | | 0,6-1,6(x-4)=3(7*0,4x) | | 7v=20+3v | | -25b=375 | | X-2/2+x/4=8 | | 2u+4=-2 | | x^2=10x+25=35 | | –2y=–6 | | -3+4w=1 | | 14–2y=8 | | s-38=44 | | 14–6y+4y=8 | | s+29=55 | | 2v=52-4v | | 20=2u+8 | | 2(7–3y)+4y=8 | | j+40=47 | | 6-2(2x+9)=-12 | | p+2=97 |